

Summary: First detection of single atoms in solid rare gas, a major step for Ba tagging in nEXO

Single Barium Atom Imaging in Solid Xenon

Christopher Chambers, Tim Walton, David Fairbank, William Fairbank for the nEXO collaboration Department of Physics, Colorado State University

 $^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^{-}$

Locate the decay using TPC 3D position reconstruction Extract Ba daughter from liquid Xe TPC using a cryogenic probe Detect the Ba daughter in solid Xe

With Ba Tagging, we eliminate all but 2vββ backgrounds

Deposition of Ba

- 1. Cool sapphire window to 50K
- 2. Inject Xe gas to form solid Xe layer

Liquid Xe TPC

Freeze Solid

Ονββ

decay

Xe Layer

- 3. Pulse Ba⁺ beam onto window
- 4. Stop Xe gas flow
- 5. Cool window to 10K

Detection of Ba Atoms

- Excite with dye laser at 572 nm
- Observe fluorescence at 619 nm
- Collect fluorescence photons with LN-cooled CCD
- Scan the laser with piezo-electric translation stages
- Evaporate sample at 100K

Background Suppression

- 532 nm laser rastered across sample (90µm × 90µm)
- Reduces surface background by a factor of 30

- Fluorescence is observed at 619 nm 70
- Raw images are integrated and
- scaled by laser power
- Fluorescence signal is linear with
- number of ions deposited
- Fluorescence signal rate of
- 379 counts/mWs per ion

Weak background emission as laser approaches the Ba atom location Strong fluorescence signal when the laser is at the Ba atom location (x,y) = (4,7)Return to weak background level when the laser passes the Ba atom location

