

Neutrino Physics Research at McGill

McGill Neutrino Research Group

What are neutrinos?

- Neutrinos are extremely light neutral particles. lacksquare
- They are some of the most abundant particles \bullet in the universe and are produced in copious amounts in stars, like our own Sun for instance.

Probing the Quantum nature of neutrinos with EXO-200 and nEXO

- Searching for the Majorana nature of neutrinos by looking for double beta decays in which no neutrinos are emitted, the neutrinoless double beta decay ($0\nu\beta\beta$).
- Ultra-low background detectors are necessary to search for these decays.
- In order to suppress the influence of cosmic backgrounds on measurements, hundreds of meters of shielding are necessary \rightarrow deep underground facilities required.
- Neutrinoless double beta decay may occur in only very few isotopes, ¹³⁶Xe is one of them.

- Around 7 billion solar neutrinos pass through your thumbnail per second²!
- They interact very little and are hard to detect.

Why study neutrinos?

- Neutrinos could be a Majorana-like particle, a type completely different from other elementary particles.
- Majorana particles are their own antiparticles.
- This discovery will represent new physics \bullet beyond the Standard Model of Particle Physics.
- It could provide an explanation for why we live \bullet in a matter dominated universe (leptogenesis).
- McGill is part of the EXO-200 and nEXO collaborations, which study neutrinos.

Expected Signal in a "calorimeter" detector⁴.

Detector Concept: Monolithic liquid Xe (~165K), enriched in 136 Xe.

Natural Radiation Decay Rates	
A banana	10 decays/s
A bicycle tire	0.3 decays/s
1L of air	1 decay/min
100 kg of ¹³⁶ Xe ($2\nu\beta\beta$)	1 decay/10 min
0νββ decay	> 10000 times rarer than $2 uetaeta$
e Sudbury Neutrino Observatory	$= 10^{-6} $

Double Beta Decay

W

M. Goeppert-Mayer second woman to win a Physics Nobel Prize.

EXO-200

- Time-projection chamber (TPC) filled with ~175kg of pure liquid xenon with ~80% 136 Xe.
- Located at the WIPP mine in New Mexico, USA.
- First experiment to observe $2\nu\beta\beta$ decay in ¹³⁶Xe and measured its half-life to be 2.2×10²¹ years⁷.
- Set lower limit on the $0\nu\beta\beta$ decay half life to \bullet 1.8×10²⁵ years at the 90% C.L⁸. The universe is 1.4×10¹⁰ years old for comparison⁹.

nEXO

- TPC with 5 tonnes of liquid xenon enriched at 90% in ¹³⁶Xe.
- Anticipated to be in SNOLAB; Ontario, Canada, $2 \text{ km under ground}^{10}$.
- Liquid Xe TPC surrounded by an outer water shield that doubles as a muon veto detector.
- nEXO seeks to meet a target sensitivity of 10^{28} years for the half-life of the $0\nu\beta\beta^{11}$.

Charge collection tiles

Neutrinoless Double Beta

Decay

Ettore Majorana

New Physics Poster: Tsvetelin Totev Contributors: T. McElroy, L. Darroch, A. Belley, S. A. Kharusi, S. Mendez. For: Thomas Brunner

8. PRL 120.7 pg. 2 (2018)

10. arXiv:1805.11142v2

12. https://str.llnl.gov/july-2016/heffner

11. PRC 97 pg.1 2018

References

- 1. Image from stick.png
- 2. https://en.wikipedia.org/wiki/Solar_neutrino
- 3. A. Belley, priv. comm. 2018
- 4. arXiv:hep-ph/0611243v1
- 5. http://inspirehep.net/record/1395218/files/Underg roundLabs.png
- 6. https://www.snolab.ca/science
- 7. PRC 89.1 pg. 1 (2014)

