

Laser Ablation Ion Source for Barium Tagging

James Fraser, Kevin Murray, Melissa Medina-Peregrina (Supervisor: Thomas Brunner) McGill University, Montreal, Canada, Summer 2019

Motivation

nEXO:

- Planned successor to EXO-200
- Future 5-tonne liquid xenon detector
- Potentially for SNOLab in Sudbury, Ontario
- Aims to observe $0\nu\beta\beta$ decay

Neutrinoless Double-Beta Decay $(0\nu\beta\beta)$:

- $2\nu\beta\beta$: two neutrinos, two electrons, observed
- $0\nu\beta\beta$: no neutrinos, two electrons, theorized
- Ultra-rare decay of Xe¹³⁶ into Ba¹³⁶
- Estimated half-life of over 10²⁶ years

• Observation would indicate that a neutrino is a Majorana particle

Ba-Tagging:

Innovative low-background ion identification technique that sidesteps most inherent radiation backgrounds of the detector:

1. Using TPC reconstruction, the site of a candidate decay is located.

2. The ion is extracted to gaseous Xe,

3. The ion is guided to spectrometers using RF funnels to reduce Xe pressure ($\sim 10^{-9}$ Torr),

zero) and saved for analysis in Python

Continuing Improvements

4. Ion identified by laser spectroscopy in a linear Paul trap and by time-of-flight spectrometry in an MR-TOF

Laser Ablation Source (LAS):

- Acts as a pure source of barium ions for equipment calibration
- Has spin-off applications for mass spectrometery

• Femtosecond laser for tighter ion energy distribution and reduced ablation damage

