
Searching for $0\nu\beta\beta$

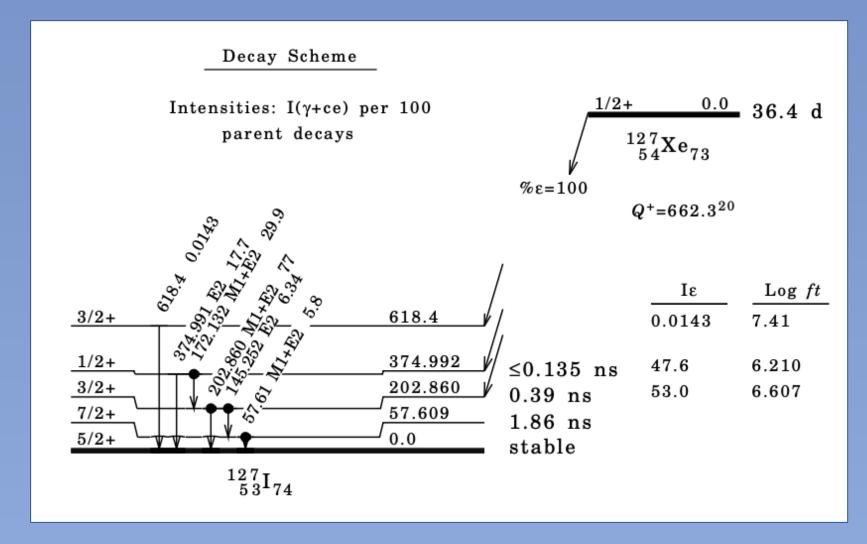
The nEXO collaboration is searching for neutrinoless double beta decay $(0\nu\beta\beta)$ using 5 tonnes of liquid xenon (LXe), enriched to 90% in Xe-136 [1].

Detection of $0\nu\beta\beta$ would be a lepton number violating process [2], which would indicate new physics from Beyond the Standard Model.

The LoLX R&D Detector at McGill

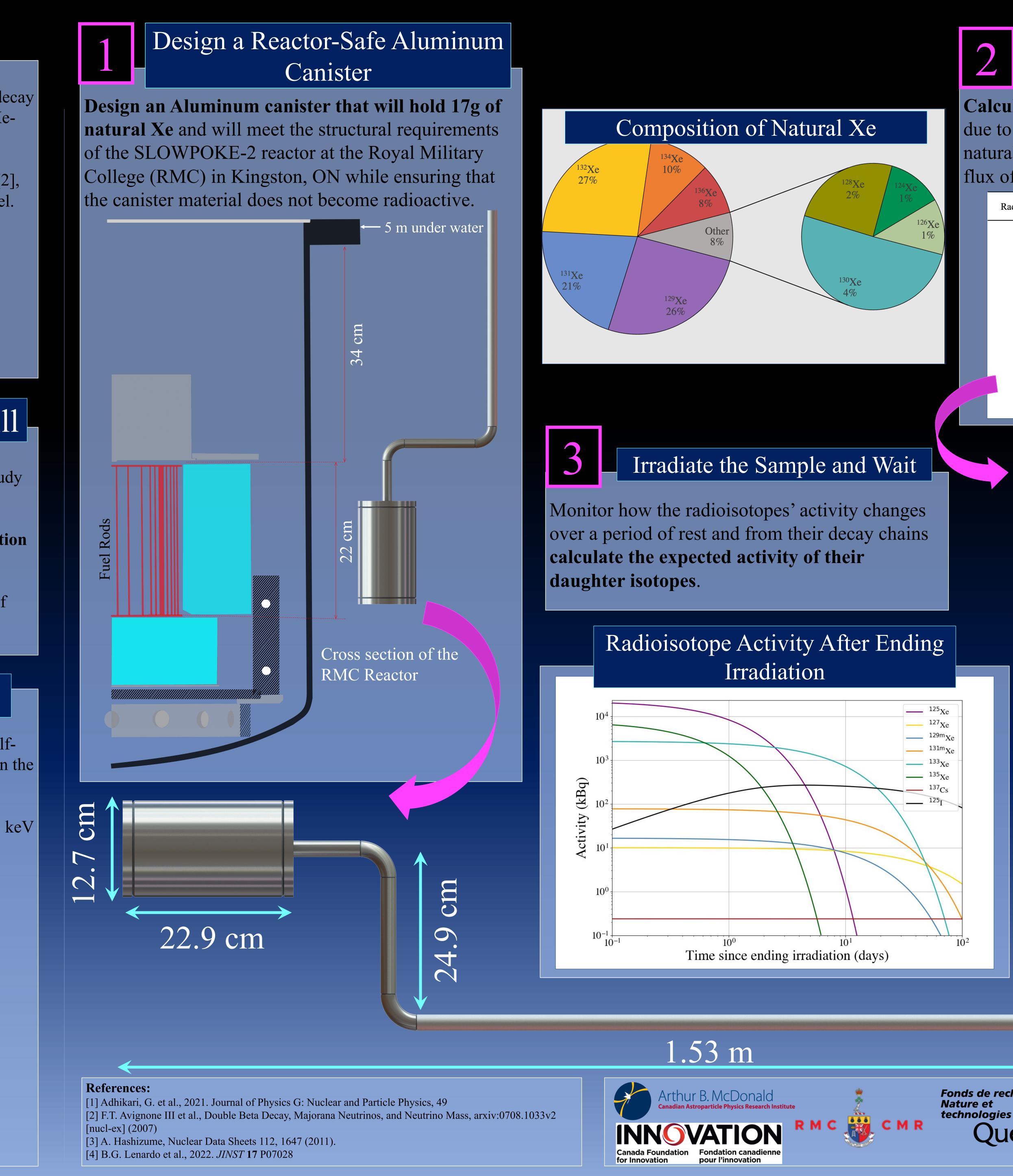
The Light-only Liquid Xenon (LoLX) experiment is designed to study the properties of light emission and transport in liquid xenon (LXe) using silicon photomultipliers (SiPMs).

Focuses on measuring and studying Cherenkov and scintillation light emission in LXe.


Currently investigating the performance and long-term behaviour of Hamamatsu VUV4 and FBK VUV-HD3 SiPMs, both of which are being considered for the nEXO collaboration.

Xe-127 as a Calibration Source

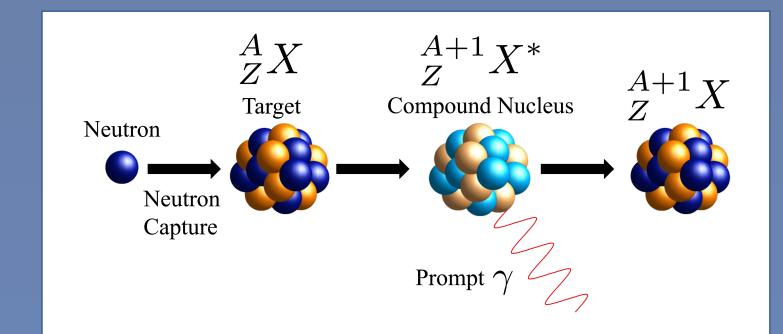
Xe-127 is an ideal calibration source as it has a relatively long halflife of 36.4 days and a Q-value of 662.3 keV [3] which is lower than the $0\nu\beta\beta$ Q-value of 2458.10 ± 0.31 keV.


Xe-127 decays to I-127 via electron capture and releases either 263 keV or 408 keV of ionizing radiation [3].

By augmenting the LXe with radioactive Xe-127, this ionizing radiation can be used for *in-situ* calibration and performance characterization of SiPMs while the detector is operational.

A Xe-127 Calibration Source for Liquid Xe Experiments

L. Rudolph, D. Gallacher, T. Brunner Department of Physics, McGill University



Perform the Theoretical Calculations

Calculate the expected radioisotope activities due to neutron activation after irradiating the natural Xe for ~170 minutes at a thermal neutron flux of 1.9×10^{10} neutrons/cm²s.

Radioisotope	Half-life	Production Mode	Decay Chain
¹²⁵ Xe	16.9 hours	124 Xe(n, γ) 125 Xe	¹²⁵ Xe $\xrightarrow{\beta^+(17 \text{ hrs})}$ ¹²⁵ I $\xrightarrow{125}$ Te
¹²⁷ Xe	36.3 days	126 Xe(n, γ) 127 Xe	${}^{127}Xe \xrightarrow{127}_{EC (36 d)} {}^{127}I$
^{129m} Xe	8.9 days	128 Xe(n, γ) 129m Xe	$^{129\mathrm{m}}\mathrm{Xe} \xrightarrow[\mathrm{IT} (9 \mathrm{d})]{129}\mathrm{Xe}$
^{131m} Xe	11.9 days	130 Xe(n, γ) 131m Xe	$^{131\mathrm{m}}\mathrm{Xe} \xrightarrow[\mathrm{IT}\ (12\ \mathrm{d})]{}^{131}\mathrm{Xe}$
¹³³ Xe	5.2 days	132 Xe(n, γ) 133 Xe	133 Xe $\xrightarrow{\beta^{-}(5 d)} ^{133}$ Cs
¹³⁵ Xe	9.1 hours	134 Xe(n, γ) 135 Xe	$^{135}\mathrm{Xe} \xrightarrow{\beta^{-} (9 \mathrm{hrs})} ^{135}\mathrm{Cs} \xrightarrow{\beta^{-} (2.3 \mathrm{x10^{6} y})} ^{135}\mathrm{Ba}$
¹³⁷ Xe	3.8 minutes	136 Xe(n, γ) 137 Xe	$^{137}\mathrm{Xe} \xrightarrow{\beta^{-}(4 \text{ min})} ^{137}\mathrm{Cs} \xrightarrow{\beta^{-}(30 \text{ y})} ^{137}\mathrm{Ba}$

Xe-127 will be produced from the neutron capture on Xe-126.

Filter Xe Prior to Deployment

Large amounts of the Cs-137 should adhere to the inner surface of the canister [4], however the gas should be purified prior to deployment.

