

Barium Tagging from Xe Gas for nEXO

Chris Chambers (McGill University), for the nEXO collaboration

Neutrinoless Double Beta Decay in the nEXO Detector

Discovery would demonstrate:

- Neutrinos are Majorana Particles
- Lepton Number Violation
- Neutrino Mass and Hierarchy

[1] More details on sensitivity of nEXO on poster by S. Sangiorgio at NEUTRINO 2020

Ba-Tagging Motivation

Background discrimination is crucial for 0v\beta\beta searches

- Under development as potential upgrade for nEXO
- Ba daughter tagging rejects all but 2vββ events
- Improves sensitivity of nEXO baseline design
- Gives positive confirmation of BB event

Scheme for Ba-Tagging from Xe Gas

Refrences:

- [1] nEXO Collaboration *Phys. Rev. C* **97**, 065503 (2018)
- [2] T. Brunner et al., Int. J. Mass Spectrom. **379**, 110-120 (2015)
- [3] M. Green et al., *Phys. Rev. A* **76** 023404 (2007)
- [4] K. Murray et al. Hyperfine Interact 240, 97 (2019)

Linear Paul Trap Development at McGill

Custom designed for Ba tagging by Yang Lan at TRIUMF/UBC

- Quadrupole Mass Filter is used to remove ions of incorrect charge to mass ratio
- He-buffer gas used to lower the energy of the Ba ions to allow for trapping
- Trap/Buncher region uses DC potential well to trap ions along the axis

Ba Spectroscopy in a Linear Paul Trap at Carleton

Single Ba⁺ ions have been successfully observed in a linear ion trap

- Fluorescence transition at 493.5 nm
- Requires re-pumping out of metastable state at 649.9nm

MR-TOF Development at McGill

Multi-Reflection Time of Flight spectrometer is machined and soon to be assembled

- lons are separated by mass through multiple passes through a drift tube
- Simulated mass resolving power of 50000 of ions from the LPT

Current Status and Outlook

Developing upgraded RF ion funnel at McGill LPT and MR-TOF are machined and being assembled at McGill Single Ba⁺ ions have been observed in a trap at Carleton